|
您现在的位置是:首页—对热力除氧器工作原理依据定律的几点分析? |
|
对热力除氧器工作原理依据定律的几点分析?
对热力除氧器工作原理依据定律的几点分析:热力除氧器原理气体在水中的溶解度与气体的种类及该气体在水面的分压力和水的温度有关。 ①在一定压力下,水的温度越高,气体的溶解度越小。 ②气体在水面上的分压力越高,其溶解度就越大。 热力除氧器原理依据亨利定律、道尔顿定律、传热传质定律。 ①亨利定律:在一定温度下,当溶于水中的气体与自水中离析的气体处于动态平衡时,溶于单位容积液体中该气体的质量b,与液面上该气体的分压力Pb成正比,即b=KPb/Po(mg/L)K—该气体的质量溶解度系数Po—液面上的全压力当水面上气体的分压力小于溶解该气体所对应的平衡压力时,该气体就会在不平衡压差ΔP作用下,自水中离析出水面,直到新的平衡状态为止。关键是如何使水面上不凝结气体的分压力近似为0。 ②道尔顿定律:混合气体的全压力等于各组成气体的分压力之和。P=∑Pi+Ps(MPa)随着水流被蒸汽不断加热,水逐渐蒸发,水表面的水蒸汽压力就逐步增大,其他气体的分压力就逐步减小,水中的气体分子逐渐脱出,并随余汽排出;当水被加热到除氧器工作压力下的饱和温度时,水表面的水蒸汽分压力等于除氧头的压力,也即蒸汽分压力等于总压力,其他气体的分压力近似为0,就可以让水中的各气体完全脱出,水中气体的溶解量接近0。 ③传质定律:气体从水中离析脱出的量与水的表面积A,不平衡压差ΔP成正比例,即G=KmAΔPKm—传质系数或离析系数。 热力除氧器除氧过程的两个阶段: ①初期热力除氧器除氧阶段 特点:水中气体较多,不平衡压差ΔP较大,气体以小汽泡的形式逸出。除去80%-90%的气体。 ②深度热力除氧器除氧阶段 特点:水中气体较少,不平衡压差ΔP很小,气体以单个分子的扩散作用离析。可利用加大汽水的接触面积,形成水膜,减小其表面张力或制造蒸汽在水中的鼓泡作用,使气体分子附着在汽泡上逸出。 |
|
|